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Abstract In this article, we introduced the truncated versions (lower, upper and double) of xgamma distribution (Sen et
al. 2016). In particular, different structural and distributional properties such as moments, popular entropy measures, order
statistics and survival characteristics of the upper truncated xgamma distribution are discussed in detail. We briefly describe
different estimation methods, namely the maximum likelihood, ordinary least squares, weighted least square and L-Moments.
Monte Carlo simulation experiments are performed for comparing the performances of the proposed methods of estimation
for both small and large samples under the lower, upper and double versions. Two applications are provided, the first one
comparing estimation methods and the other for illustrating the applicability of the new model.
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1. Introduction and motivation

In manufacturing industries, final products often pass through a screening inspection before being sent to the
customers. It is then a normal practice that if a product’s performance falls within certain tolerance limits, it is
being judged as conforming and thereby sent to the customer. A product is usually rejected and therefore scrapped
or reworked if it fails to conform. In this case, the actual distribution to the customer is truncated. As a standard
practice, truncated distributions are applied, in particular, for such industrial applications and settings (see for more
details Cho and Govindaluri [4], Kapur and Cho [22], [23], Phillips and Cho [31], [32], Khasawneh et al. [24], [25]
and references therein).
As an another example, truncated distributions are well applied in multi-stage production process in which
inspection is done at each stage and only conforming items are sent to the next stage. Very useful application
can also be found in accelerated life testing situations. In practice, the concept of a truncated distribution plays
an important role in analyzing a variety of production processes, process optimization and quality improvement
techniques.
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To model intensity statistics in the study of atomic heterogeneity, truncated distributions are utilized (see
Mukhopadhyay et al. [29] for more insight). In another situation, measurements match well with a truncated
distribution with much better fit over smaller file or request sizes for high-performance Ethernet (see for more
details Field et al. [10]).
Truncated versions of several standard continuous probability distributions have been studied by different authors
and applied successfully to numerous real life situations (see for example, Hegde and Dahiya [14], Mittal and
Dahiya [28], Nadarajah [30], Zaninetti and Ferraro [43] and, Zhang and Xie [44]). Recently, Sen et al. [35]
introduced and studied a one-parameter lifetime distribution, named xgamma distribution, with probability density
function (PDF) as

f(x) =
θ2

(1 + θ)

(
1 +

θ

2
x2
)
e−θx, x > 0, θ > 0.

It is denoted by X ∼ xgamma(θ). The corresponding cumulative distribution function (CDF) is given by

F (x) = 1−

(
1 + θ + θx+ θ2x2

2

)
(1 + θ)

e−θx, x > 0, θ > 0.

The xgamma distribution is applied successfully to time-to-event data set and its different properties are studied.
Our aim in this investigation is to introduce and study the truncated version(s) of xgamma distribution for
understanding situations for which better modeling is possible. In literature there are many works focused on the
xgamma distribution sush as Sen et al. [34] (for the quasi xgamma-Poisson distribution), Yousof et al. [40] (for the
two-parameter xgamma-Fréchet distribution with some characterizations results, properties, copulas and different
classical estimation methods), Cordeiro et al. [5] (for the xgamma family with censored regression modelling and
some applications) and Ibrahim et al. [20] (for a new three-parameter version of the xgamma-Fréchet distribution
with applicationss and different methods of estimation).
A truncated distribution in statistics is a conditional distribution that is produced when the domain of another
probability distribution is constrained. In situations where the capacity to record, or even to know about,
occurrences is restricted to values that lie above or below a particular threshold or within a set range, truncated
distributions are created. The dates of birth of students at a school, for instance, would normally be truncated in
comparison to those of all students in the neighbourhood since the school only admits students who fall within
a certain age range on a particular day. Generally, there are many practical cases in which the researcher has
to truncate the data in order to complete the study. This truncation of the data necessarily requires a truncated
probability distribution that is suitable for modeling this data. This truncating also results in changes in the
mathematical properties of the probability distribution and other results different from the original version before
the truncation.
In this paper we are motivates to present the truncated xgamma distribution for the following reasons:

1. The statistical literature in general is still poor on this aspect of probability distributions. This scarcity of
truncated distributions has motivated us to present this work, hoping that it will gain a great deal of study
and analysis in the aspect of mathematical modeling and statistical analysis.

2. Truncation are distinguished with presenting three versions of the truncated distribution, and these three
versions are suitable in the case of lower truncation, upper truncation and double truncation.

3. Providing new truncated distributions with high flexibility, by introducing new density functions and hazard
rate functions that have high flexibility.

4. Presenting truncated distributions with skew coefficient and kurtosis coefficient that have a wide flexibility.
These two coefficients are among the most important factors that show the elasticity of any probability
distribution.

5. In the aspect of statistical inference, we presente a comprehensive simulation study using many classical
methods such as the maximum likelihood method, the ordinary least squares method, L-Moments method
and weighted least squares method. By examining the statistical literature, there is a great scarcity in this
aspect specifically. Therefore, we have compared the four classical methods and highlighted the best method
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using the truncation approach. The comparison between the classical methods was also made within the
framework of applications on actual data. We have presented an application on truncated actual data for this
purpose specifically.

The rest of the article is organized as follows: In section 2, we introduce the truncated versions of xgamma
distribution. Sections 3 and 4 deal with basic structural properties and entropy measures respectively. Order
statistics and survival characteristics are studied in Sections 5 and 6 respectively. The unknown parameters are
estimated by the various method in Section 7. In Section 8, Simulation studies for comparing estimation methods
are presented. In Section 9, a real life data set is analyzed for comparing classical methods and for comparing
different models. Finally, concluding remarks are offered in Section 10.

2. The truncated xgamma distribution

If X is a continuous random variable then for truncated version of X , we have the following definition:

Definition 1
An absolutely continuous random variable, X , is said to follow a double truncated distribution (DTD) over the
interval [α, β] if it has the CDF as

G(x) =
F (x)− F (α)

F (β)− F (α)
, α ≤ x ≤ β,

where F (.) denotes the CDF of the baseline distribution, α and β, points of truncation.
The corresponding PDF is

g(x) =
f(x)

F (β)− F (α)
, α ≤ x ≤ β,

where f(.) is the PDF of baseline distribution.

We recognize the following three cases:

(i) When α→ 0 and β → ∞, we have the baseline lifetime distribution with support (0,∞).
(ii) When α→ 0, we have upper truncated distribution (UTD) of the baseline distribution.

(iii) When β → ∞, we have lower truncated distribution (LTD) of the baseline distribution.

Applying the above definition and taking the baseline distribution as xgamma(θ) we have the following definition
for truncated version of xgamma distribution:

Definition 2
A continuous random variable, X , is said to follow a double truncated xgamma (DTXG) distribution with support
[α, β] if its PDF is of the form:

g(x;α, β, θ) =
θ2

(1 + θ)

(
1 + θ

2x
2
)
e−θx

[F (β)− F (α)]
, α ≤ x ≤ β, α > 0, β > 0, θ > 0,

where F (.) is the CDF of xgamma distribution before. Also, we denote it by X ∼ DTXG(α, β, θ).

Hereafter, we concentrate mainly in studying the upper truncated version of xgamma distribution with the following
definition:

Definition 3
A continuous random variable, X , is said to follow an upper truncated xgamma (UTXG) distribution if its PDF is
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given by:

g(x;β, θ) = K(β, θ)

(
1 +

θ

2
x2
)
e−θx, 0 ≤ x ≤ β, β > 0, θ > 0, (1)

where K(β, θ) = θ2

(1+θ)(1−e−θβ)−θβ(1+ θβ
2 )e−θβ

, a function of β and θ.

We denote it by X ∼ UTXG(β, θ).

The corresponding CDF is given by

G(x;β, θ) =
F (x)

F (β)
, 0 ≤ x ≤ β.

The characteristic function (CF) of X is derived as

ϕX(t) = K(β, θ)

[
1

(θ − it)
γ{1, (θ − it)β}+ θ

2(θ − it)3
γ{3, (θ − it)β}

]
, t ∈ R, i =

√
−1.

Figure 1 gives plots of the baseline XG PDF for some parameter values. Figure 2 provides plots of the UTXG PDF
for some parameter values. Figure 3 displays plots of the LTXG PDF for some parameter values. Figure 4 shows
plots of the DTXG PDF for some parameter values. Due to Figure 1, the density of baseline XG model (α→ 0 and
β → ∞) can be unimodal with right tail and bimodal with right tail. Based Figure 2, the density of baseline UTXG
model (α→ 0) can be unimodal with right tail, left skewed with no beak and bimodal with right tail. Based to
Figure 3, the density of baseline LTXG model (β → ∞) can be bimodal with right tail and unimodal with right tail.
Based to Figure 4, the density of baseline DTXG model can be right skewed with no peak and unimodal with right
tail. Generally, the truncation approach converted the XG model to a more flexible model which contains various
useful density shapes for statistical modeling and reliability testing. The degree of the skew coefficient, kurtosis
coefficient, failure rate function, and diversity in the density and failure rate functions all play a role in how flexible
the probability distribution is. Additionally, the probability distribution’s usability and effectiveness in statistical
modelling are crucial in this regard. After examining the novel probability distribution, we discovered that it was
quite adaptable in the many applied areas. This is what motivated us to investigate this probability distribution
thoroughly.

3. Moments and associated measures

The rth order raw moment of X ∼ UTXG(β, θ) is obtained as

µ
′

r = E(Xr) =

∫ β

0

xrg(x;β, θ)dx

=
K(β, θ)

θr+1

[
γ(r + 1, θβ) +

1

2θ
γ(r + 3, θβ)

]
; r = 1, 2, . . . , (2)

where γ(a, x) =
∫ x

0
za−1e−zdz is lower incomplete gamma function.

In particular, we have

E(X) =
K(β, θ)

θ2

[
γ(2, θβ) +

1

2θ
γ(4, θβ)

]
= µ (say)

and

V (X) = E(X2)− [E(X)]2

=
K(β, θ)

θ3

[
{γ(3, θβ) + 1

2θ
γ(5, θβ)} − K(β, θ)

θ
{γ(2, θβ) + 1

2θ
γ(4, θβ)}2

]
= σ2 (say) (3)
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Table 1. Mean and variance values for selected values of θ and β.

θ

β ↓ 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

5 µ 2.6285 2.3682 2.0293 1.6935 1.3996 1.1606 0.9735 0.8288

σ2 2.1392 2.0934 1.9335 1.6620 1.3447 1.0473 0.8035 0.6175

10 µ 5.2821 3.9136 2.7518 1.9870 1.5097 1.1998 0.9870 0.8333

σ2 7.8938 6.8105 4.6456 2.8830 1.8275 1.2252 0.8661 0.6389

15 µ 7.3244 4.4884 2.8494 1.9997 1.5111 1.2000 0.9870 0.8333

σ2 12.3538 10.6627 5.4461 2.9961 1.8408 1.2267 0.8662 0.6389

20 µ 8.7030 4.6336 2.8567 1.9999 1.5111 1.2000 0.9870 0.8333

σ2 17.0923 12.3157 5.5432 2.9999 1.8410 1.2267 0.8663 0.6389

Table 1 shows the values of µ and σ2 for selected values of β and θ.
The moment generating function (MGF) of X is derived as

MX(t) = K(β, θ)

[
1

(θ − t)
γ{1, (θ − t)β}+ θ

2(θ − t)3
γ{3, (θ − t)β}

]
, t ∈ R.

The cumulant generating function (CGF) of X is derived as

KX(t) = lnK(β, θ) + ln

[
1

(θ − t)
γ{1, (θ − t)β}+ θ

2(θ − t)3
γ{3, (θ − t)β}

]
, t ∈ R.

The following theorem shows that UTXG(β, θ) is unimodal.

Theorem 1
For 0 < θ ≤ 1

2 , g(x) given in (1) attains a maximum at x = 1+
√
1−2θ
θ and for θ > 1

2 , g(x) decreases in x.

Proof
The proof is straightforward by taking the first derivative of g(x) with respect to x.

Hence we have for X ∼ UTXG(β, θ),

Mode(X) =

{
1+

√
1−2θ
θ , if 0 < θ ≤ 1/2.

0 , otherwise.
(4)

4. Entropy measures

An entropy of a random variable X is a measure of variation of the uncertainty. A popular entropy measure is
Rényi entropy. If a non-negative continuous random variable, X , has the probability density function f(x), then
Rényi entropy is defined as

HR(δ) =
1

1− δ
ln

∫ ∞

0

fδ(x)dx for δ > 0 (̸= 1).

When X ∼ UTXG(β, θ), one can derive∫ β

0

gδ(x;β, θ)dx = [K(β, θ)]δ
δ∑

j=0

(
δ

j

)
1

2jδ2j+1θj+1
γ(2j + 1, δθβ)
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to obtain Rényi entropy as

HR(δ) =
δ

1− δ
K(β, θ) +

1

1− δ
ln

[
δ∑

j=0

(
δ

j

)
1

2jδ2j+1θj+1
γ(2j + 1, δθβ)

]
.

In physics, the Tsallis entropy (see [42]) is a generalization of the standard Boltzmann-Gibbs entropy. For an
absolutely continuous non-negative random variable X with PDF f(x), Tsallis entropy (also called q-entropy) is
defined as

Sq(X) =
1

q − 1
ln

[
1−

∫ ∞

0

fq(x)dx

]
for q > 0 (̸= 1)

When X ∼ UTXG(β, θ), Tsallis entropy can be derived as

Sq(X) =
1

q − 1
ln

[
1− [K(β, θ)]q

q∑
j=0

(
q

j

)
1

2jq2j+1θj+1
γ(2j + 1, qθβ)

]
.

Shannon measure of entropy is defined as

H(g) = E[− ln g(x)] = −
∫ ∞

0

ln[g(x)]g(x)dx.

For X ∼ UTXG(β, θ), Shannon entropy is obtained as

H(g) =
K(β, θ)

θ

[
γ(2, θβ) +

1

2θ
γ(4, θβ)

]
− lnK(β, θ)

−K(β, θ)

∞∑
j=0

(−1)j+1 1

j2jθj+1

[
γ(2j + 1, θβ) +

1

2θ
γ(2j + 3, θβ)

]
. (5)

5. Order statistics

The distributions of order statistics play important role in obtaining system reliabilities (be it biological or
mechanical) when the components are connected in series or parallel configurations.
Let X1, X2, . . . , Xn be a random sample of size n drawn from X ∼ UTXG(β, θ).
Denote X(j) as the jth order statistic. Then X(1) and X(n) denote the smallest and largest order statistics for a
sample of size n drawn from UTXG(β, θ), respectively. The PDF of X(1) is derived as

fX(1)
(x;β, θ) =

nθ2

(1 + θ){F (β)}n

(
1 +

θ

2
x2
)
e−θx{F (β)− F (x)}n−1, 0 ≤ x ≤ β.

The PDF of X(n) is obtained as

fX(n)
(x;β, θ) =

nθ2

(1 + θ){F (β)}n

(
1 +

θ

2
x2
)
e−θx{F (x)}n−1, 0 ≤ x ≤ β.

6. Survival characteristics

In this section we study the important survival properties of a random variable X following UTXG(β, θ).
The survival/reliability function of X is given by

S(x;β, θ) =
F (β)− F (x)

F (β)
, 0 ≤ x ≤ β. (6)
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The failure rate function is obtained as

h(x) =
θ2

(1 + θ)

(
1 + θ

2x
2
)
e−θx

[F (β)− F (x)]
, 0 ≤ x ≤ β. (7)

Now, we investigate aging property of the failure rate function in (7). The distribution in (1) is increasing failure
rate (IFR) or decreasing failure rate (DFR) depending on a particular range of X . We have the following theorem:

Theorem 2
The distribution, UTXG(β, θ), is IFR (DFR) if x > (<)

√
2
θ for all θ > 0.

Proof
If a continuous non-negative random variable X has PDF f(x), we define

η(x) = − f(x)

f ′(x)
,

where f
′
(x) is the first derivative of f(x) with respect to x.

Then, f(x) is IFR (DFR) according as η(x) is increasing (decreasing) in x (see [9] for the characterization). When
X ∼ UTXG(β, θ), let us consider

ηUTXG(x) = − g(x;β, θ)

g′(x;β, θ)

and, when X ∼ xgamma(θ), let us take

ηXG(x) = − f(x; θ)

f ′(x; θ)
.

Then we have,

ηUTXG(x) = ηXG(x) = θ − θx(
1 + θ

2x
2
) ,

which gives after taking first derivative with respect to x, η
′

XG(x) =
θ( θ

2x
2)

(1+ θ
2x

2)
2 and is positive (negative) if

x > (<)
√

2
θ for all θ > 0. Hence the proof.

The reverse hazard rate (RHR) function of X is given by

r(x) =
θ2

(1 + θ)

(
1 + θ

2x
2
)
e−θx

F (x)
, 0 ≤ x ≤ β.

7. Estimation of parameters

Consider the following classical estimation methods:
1-The maximum likelihood (ML) method.
2-the ordinary least squares (OLS) method.
3-The L-Moments method.
4-The whighted least squares (WLS) method.
These methods and many others have recently been used in statistical modeling and evaluation using applications

on actual data and using simulation studies. For more information on these and other methods, see Ibrahim et
al. ([21] and [18]) for different methods of estimation under a new extension of Lindley distribution and a new
Burr type XII distribution, Yadav et al. [37] for different methods of estimation under a new Topp-Leone-Lomax
distribution, Mansour et al. [26] for different methods of estimation under a new Burr X Weibull distribution,
Mansour et al. [27] for different methods of estimation under a new two parameter Burr XII distribution, Ibrahim
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et al. ([16] and [15]) for different methods of estimation under discrete analogue of the Weibull G family and a
exponential generalized log-logistic model, Ibrahim et al. [17] for different methods of estimation under the Burr
XII exponentiated exponential distribution, Aboraya et al. [2] for different methods of estimation under a novel
family of discrete distributions, Elgohari et al. [6] for different methods of estimation under a novel version of
the Lomax distribution, Salah et al. [33] for different methods of estimation under a novel version of Fréchet
distribution, Yousof et al. [38] for different methods of estimation under a new reciprocal Rayleigh extension,
Yousof et al. [41] for different methods of estimation under a novel Chen extension, Yousof et al. [39] for different
methods of estimation under a novel Nadarajah Haghighi extension, Shehata et al. [36] for different methods of
estimation under a novel Nadarajah Haghighi extension. Also, see Hamedani et al. [13], Aboraya et al. [1], Eliwa
et al. [7], Hamed et al. [12], Ali et al. [3], Ibrahim et al. [19] and El-Morshedy et al. [8] for more details.

All these methods are discussed in the statistical literature with more details. In this work, we may ignore many of
its derivation details for avoiding the replication. However, we propose maximum likelihood of estimation (MLE)
for the unknown parameters of double truncated xgamma (DTXG), lower truncated xgamma (LTXG) and upper
truncated xgamma (UTXG) distributions with more details since the application section will depend on its results.
Let X1, X2, . . . , Xn be a random sample of size n and x = (x1, x2, . . . , xn) be a particular realization on that.

The ML method

MLEs for DTXG
In case whenX follows aDTXG(α, β, θ), let us denote x = (x1, x2, . . . , xn) as a particular realization on a sample
of size n drawn from it.
The likelihood function is then given by

L(α, β, θ|x) =
n∏

i=1

θ2
(
1 + θ

2x
2
i

)
e−θxi

ψ(α, β, θ)
,

where

ψ(α, β, θ) = (1 + θ)
(
e−θα − e−θβ

)
+ θ

(
αe−θα − βe−θβ

)
+
θ2

2

(
α2e−θα − β2e−θβ

)
,

a function of α, β and θ. It is obvious that the MLEs of α and β, say α̂ and β̂, are

X(1) = min{X1, X2, . . . , Xn}

and
X(n) = max{X1, X2, . . . , Xn},

respectively, i.e., α̂ = X(1) = smallest order statistic and β̂ = X(n) = largest order statistic. Given α̂ and β̂, to
obtain the MLE of θ, we have the log-likelihood function as

lnL(α̂, β̂, θ|x) = 2n ln θ +

n∑
i=1

ln

(
1 +

θ

2
x2i

)
− θ

n∑
i=1

xi − n lnψ(α̂, β̂, θ),

which gives the following log-likelihood equation

2n

θ
+

n∑
i=1

x2i
2
(
1 + θ

2x
2
i

) − n∑
i=1

xi − n
ψ

′
(α̂, β̂, θ)

ψ(α̂, β̂, θ)
= 0,

where
ψ

′
(α̂, β̂, θ) =

d

dθ
ψ(α̂, β̂, θ).

The log-likelihood equation is a non-linear function in θ, we can solve it by any numerical method to obtain θ̂, the
MLE of θ.
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MLEs for LTXG
In case when X follows LTXG distribution with parameters α and θ, denoting x = (x1, x2, . . . , xn) as a particular
realization on a sample of size n from it, we have likelihood function as

L(α, θ|x) =
n∏

i=1

θ2
(
1 + θ

2x
2
i

)
e−θ(xi−α)(

1 + θ + θα+ θ2

2 α
2
) .

The MLE of α is, obviously
α̂ = min{X1, X2, . . . , Xn} = X(1),

the smallest order statistic. Hence for given α̂, to obtain MLE of θ, say θ̂, we have the following log-likelihood
function

lnL(α̂, θ|x) = 2n ln θ +

n∑
i=1

ln

(
1 +

θ

2
x2i

)
− θ

n∑
i=1

xi + nθα̂− n ln

(
1 + θ + θα̂+

θ2

2
α̂2

)
.

The MLE θ̂ is the solution of the log-likelihood equation

2n

θ
+

n∑
i=1

x2i
2
(
1 + θ

2x
2
i

) − n∑
i=1

xi + nα̂−
n
(
1 + α̂+ α̂2θ

)(
1 + θ + θα̂+ θ2

2 α̂
2
) = 0,

which can be solved by numerical methods.

MLEs for UTXG
When X ∼ UTXG(β, θ), let us take, in a similar fashion as earlier, x = (x1, x2, . . . , xn) to denote a particular
realization on a random sample of size n from it. The likelihood function, in this case, is

L(β, θ|x) =
n∏

i=1

K(β, θ)

(
1 +

θ

2
x2i

)
e−θ(xi−α).

In this case, the MLE of β is
β̂ = max{X1, X2, . . . , Xn} = X(n),

the largest order statistic. Given β̂, the log-likelihood function is obtained as

lnL(β̂, θ|x) = 2n ln θ +

n∑
i=1

ln

(
1 +

θ

2
x2i

)
− θ

n∑
i=1

xi

− n ln

[
(1 + θ)

(
1− e−θβ̂

)
− θβ̂

(
1 +

θβ̂

2

)
e−θβ̂

]
(8)

The MLE of θ, θ̂, is the solution of the log-likelihood equation given by

2n

θ
+

n∑
i=1

x2i
2
(
1 + θ

2x
2
i

) − n∑
i=1

xi −
n
[(

1− e−θβ̂
)
+ θβ̂

(
1 + θβ̂2

2

)
e−θβ̂

]
[
(1 + θ)

(
1− e−θβ̂

)
− θβ̂

(
1 + θβ̂

2

)
e−θβ̂

] = 0,

which is again a non-linear equation in θ and is solved using numerical methods.
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7.1. The OLS method

Let F·(x[i:n]) denote the CDF of TXG model and let X1,n < X2,n < · · · < Xn,n be the n ordered RS. The ordinary
least squares estimates (OLSEs) are obtained upon minimizing

OLSE(·) =
n∑

i=1

[
F·(x[i:n])− τ(i,n)

]2
.

where
τ(i,n) =

i

n+ 1

and F·(x[i:n]) can be the DTXG(α, β, θ) with Fα,β,θ(x[i:n]) or UTXG(β, θ) with Fβ,θ(x[i:n]) or the LTXG(α, θ)
with Fα,θ(x[i:n]) CDFs. The OLSEs are obtained via solving the following non-linear equations

0 =

n∑
i=1

[
F·(x[i:n])− τ(i,n)

]
ςα(x[i:n], ·),

0 =

n∑
i=1

[
F·(x[i:n])− τ(i,n)

]
ςβ(x[i:n], ·),

and

0 =

n∑
i=1

[
F·(x[i:n])− τ(i,n)

]
ςθ(x[i:n], ·),

where ςα(x[i:n], ·), ςβ(x[i:n], ·) and ςθ(x[i:n], ·) are ∂F·(x[i:n])/∂α, ∂F·(x[i:n])/∂β and ∂F·(x[i:n])/∂θ respectively.

7.2. L-Moments method

However, linear combinations of the order statistics can be used to estimate the L-Moments, which are comparable
to ordinary moments. They are relatively resistant to the effects of outliers and exist anytime the distribution’s mean
does, even if certain higher moments do not. Based on the moments of the order statistics, we can derive explicit
expressions for the L-moments of x as infinite weighted linear combinations of the means of suitable TXG order
statistics. The L-Moments for the population can be obtained from

γr =
1

r

r−1

m=0
(−1)

m

(
r − 1

m

)
E (xr−m:m) | (r≥1). (9)

The first four L-Moments are given by

m1 = E (x1:1) = µ′
1 = L1,

m2 =
1

2
E (x2:2 − x1:2) =

1

2
(µ′

2:2 − µ′
1:2) = L2,

and
m3 =

1

3
E (x3:3 − 2x2:3 + x1:3) =

1

3
(µ′

3:3 − 2µ′
2:3 + µ′

1:3) = L3,

where Li|(i=1.2.3) is the L-Moments for the sample. Then, the L-moments estimators of the parameters α, β and θ
can be obtained by solving the following three equations numerically

m1

(
α̂(L−Moments), β̂(L−Moments), θ̂(L−Moments)

)
= L1,

m2

(
α̂(L−Moments), β̂(L−Moments), θ̂(L−Moments)

)
= L2,

and
m3

(
α̂(L−Moments), β̂(L−Moments), θ̂(L−Moments)

)
= L3.
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7.3. WLS method

The weighted least squares estimates (WLSEs) are obtained by minimizing the function WLSE (·) with respect to
α, β and θ

WLSE (·) =
n∑

i=1

ω(i,n)

[
F·(x[i:n])− τ(i,n)

]2
,

where

ω(i,n) =
[
(1 + n)2(2 + n)

]
/ [i(1 + n− i)] .

and F·(x[i:n]) can be the DTXG(α, β, θ) or UTXG(β, θ) or the LTXG(α, θ) CDFs. The WLSEs are obtained via
solving the following non-linear equations

0 =

n∑
i=1

ω(i,n)

[
F·(x[i:n])− τ(i,n)

]
ςα(x[i:n], ·),

0 =

n∑
i=1

ω(i,n)

[
F·(x[i:n])− τ(i,n)

]
ςβ(x[i:n], ·),

and

0 =

n∑
i=1

ω(i,n)

[
F·(x[i:n])− τ(i,n)

]
ςθ(x[i:n], ·),

where ςα(x[i:n], ·), ςβ(x[i:n], ·) and ςθ(x[i:n], ·) are as defined above.

8. Simulation studies for comparing estimation methods

A simulation is an ongoing replica of how a system or process might work in the actual world. Models must be
used in simulations; the model reflects the essential traits or behaviors of the chosen system or process, whilst the
simulation depicts the model’s development through time. Computers are widely applied to run the simulation.
There are several applications for simulation, including video games, safety engineering, testing, teaching, and
performance tuning or optimization of technology. In order to understand how natural or human systems work,
simulation is also employed in scientific modelling, such as in economics. The eventual actual impacts of different
circumstances and actions can be demonstrated through simulation. When the real system cannot be utilized,
for example, because it is inaccessible, unsafe, or unpleasant to use, it is still being created but has not yet
been constructed, or it just doesn’t exist, simulation is employed. The acquisition of reliable information from
reliable sources about the pertinent selection of key characteristics used to build the model, the use of simplifying
approximations and assumptions within the model, and the fidelity and validity of the simulation results are some
of the key issues in modelling and simulation. An continuous area of academic study, elaboration, research, and
advancement in simulations technology or technique, notably in the work of computer simulation, is procedures and
protocols for model verification and validation. In this Section, a numerical simulation is performed to compare
the classical estimation methods. The simulation study is based on N=1000 generated data sets from the TXG
version where n = 50, 100, 150 and 300. The estimates are compared in terms of their bias

(
BIAS(·)

)
and mean

standard error
(
RMSE(·)

)
. Table 2 lists the simulation results for DTXG model. Table 3 lists the simulation results

for DTXG model. Table 4 provides the simulation results for LTXG model. From Tables 2, 3 and 4 we note that:
I. The BIAS(·) tend to zero when n increases which means that all estimators are consistent.
II. The RMSE(·) tend to zero when n increases which means incidence of consistency property.
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Table 2: Simulation results for DTXG.
n BIAS(α) BIAS(β) BIAS(θ) MSE(α) MSE(β) MSE(θ)

MLE 20 −0.18988 0.33971 −0.00182 5.04622 7.96603 0.00343
LS −0.20446 −0.46774 −0.00225 19.5937 214.31458 0.0036

L-Moments −0.01935 0.25724 −0.00209 2.99639 5.88326 0.00354
WLS 0.25051 0.17797 0.00271 17.8097 67.34753 0.00355

MLE 50 −0.13715 0.09408 0.00027 2.16432 3.24087 0.00147
LS 0.02814 0.16385 −0.00016 2.38445 6.74487 0.00154

L-Moments −0.03911 0.06081 0.00045 1.3282 2.52853 0.0015
WLS 0.0369 −0.10831 0.00003 1.13147 3.00061 0.0015

MLE 150 −0.03291 0.0485 −0.00028 0.65097 1.02794 0.00047
LS 0.06742 0.05911 −0.00082 0.81669 2.11751 0.00047

L-Moments 0.00221 0.03655 0.00004 0.39649 0.77295 0.00045
WLS −0.04798 0.0231 0.00036 0.39955 0.9581 0.00044

MLE 300 −0.0277 0.01335 0.00009 0.30916 0.48256 0.00022
LS 0.0056 −0.01711 0.00024 0.39732 1.05668 0.00024

L-Moments −0.01057 0.01284 0.0005 0.21129 0.39241 0.00023
WLS −0.03965 0.07024 −0.00017 0.22851 0.55418 0.00023

9. Applications

9.1. Application for comparing classical methods

For comparing classical methods, an application to real data set is introduced. We consider the Kolmomogorov-
Smirnov (KS) statistic and its p-value. We consider strength data of glass of aircraft window reported by Fullet
et al. [11]. The data is presented in Table 5. Table 6 gives the results for DTXG model under the strength data.
Table 7 gives the results for UTXG model under the strength data. Table 8 gives the results for LTXG model under
the strength data. From Table 6, the OLS method is the best method with KS=0.10860 and p-value=0.85806 then
WLS with KS=0.11111 and p-value=0.83870. However, the other methods performed well. From Table 7, the OLS
method is the best method with KS=0.19820 and p-value=0.17499. However, the ML and WLS methods performed
well. From Table 8, the OLS method is the best method with KS=0.14453 and p-value=0.53648. However, the ML
and L-Moment methods performed well. Generally, we can say that the OLS methods is the best methed and can
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be recommended for comparing the estimation methods.

Table 3: Simulation results for UTXG.
n BIAS(β) BIAS(θ) MSE(β) MSE(θ)

MLE 20 0.00594 0.0245 6.04792 0.00378
LS −0.69331 −0.04098 234.60137 0.04706

L-Moments 0.42751 −0.0029 10.93383 0.00284
WLS 0.62148 0.05271 150.44423 0.00972

MLE 50 −0.08771 0.01758 1.80590 0.00210
LS 0.12593 −0.03441 6.19452 0.00612

L-Moments 0.10946 −0.00015 4.48167 0.00119
WLS −0.08933 0.03799 2.78863 0.00669

MLE 150 −0.12502 0.00853 0.55195 0.00099
LS 0.01661 −0.01933 1.90316 0.00325

L-Moments 0.05303 −0.00041 1.33857 0.00035
WLS 0.02207 0.02069 0.94507 0.00343

MLE 300 −0.14934 0.0075 0.29553 0.00067
LS −0.02073 −0.00895 0.97574 0.00156

L-Moments 0.01221 0.00009 0.68479 0.00018
WLS 0.06206 0.01546 0.50154 0.00249

Table 4: Simulation results for LTXG.
n BIAS(α) BIAS(θ) MSE(α) MSE(θ)

MLE 20 0.08377 0.00406 2.96808 0.00115
LS 0.19299 0.00316 1.64559 0.00222

L-Moments −0.08404 0.0024 8.81319 0.00081
WLS −0.07499 −0.0028 0.97036 0.00168

MLE 50 −0.013 0.0026 1.27578 0.00046
LS 0.13619 0.00173 0.93617 0.00059

L-Moments 0.15616 0.00091 0.87484 0.00056
WLS −0.03297 −0.00176 0.43075 0.00054

MLE 150 0.00381 0.00065 0.41299 0.00014
LS 0.06359 0.00031 0.29735 0.00017

L-Moments 0.01413 0.00001 1.21324 0.0001
WLS −0.049 −0.00037 0.16495 0.00016

MLE 300 0.00288 0.00026 0.19375 0.00007
LS 0.02240 0.00040 0.14642 0.00009

L-Moments −0.01916 0.00019 0.62064 0.00005
WLS −0.03706 −0.00036 0.09411 0.00008
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Table 5: Data on Glass strength of aircraft window

18.83 20.80 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.80
26.69 26.770 26.78 27.05 27.67 29.90 31.11 33.20 33.73 33.76
33.890 34.76 35.75 35.91 36.98 37.08 37.09 39.58 44.045 45.29
45.381

Table 6: Results for DTXG model under the strength data.

Method α̂ β̂ θ̂ KS p-value
ML 18.83 45.381 0.08618 0.11300 0.82347
OLS 18.83 45.881 0.08799 0.10860 0.85806
WLS 18.83 45.381 0.08696 0.11111 0.83870

L-Moment 18.83 45.381 0.08606 0.11329 0.82109

Table 7: Results for UTXG model under the strength data.

Method β̂ θ̂ KS p-value
ML 45.381 0.03487 0.19824 0.17480
OLS 45.881 0.03485 0.19820 0.17499
WLS 45.381 0.02614 0.20032 0.16605

L-Moment 45.381 0.01531 0.22277 0.09221

Table 8: Results for LTXG model under the strength data.

Method α̂ θ̂ KS p-value
ML 18.83 0.13768 0.16553 0.36358
OLS 18.83 0.12406 0.14453 0.53648
WLS 18.83 0.16457 0.28994 0.01090

L-Moment 18.83 0.13756 0.16512 0.36659

9.2. Application for comparing models

In this section, applicability of the truncated versions xgamma distribution is illustrated by a real data analysis.
We consider strength data of glass of aircraft window reported by Fullet et al. [11]. We have fitted the data
by exponential distribution with rate λ, Weibull distribution with shape α and scale λ, Lindley distribution
with parameter θ, xgamma(θ), LTXG(α, θ), UTXG(β, θ) and DTXG(α, β, θ) distributions. Maximum likelihood
estimates are obtained for the unknown parameters of each model. As model comparison criteria, we have
considered log-likelihood values, KS, Akaike information criteria (AIC) and Bayesian information criteria (BIC).
We note that,

AIC = −2 ln(likelihood) + 2k ;

BIC = −2ln(likelihood) + k ln(n),

where k is the number of parameters in a distribution, n is the sample size. Lower the value of AIC and/or BIC,
better is the model. The result of the data analysis is listed in Table 9. Along with MLEs the standard errors of
estimation are shown in parentheses. Based on the ? table, it is clear to us that the new distribution has a high
applicability and wide flexibility in statistical modeling processes. This practical ability is demonstrated by the
standards values of the new distribution. Where the new distribution showed the best results and were as follows:

1. Regarding the results for DTXG model under the strength data: The DTXG model is the best model with
−Log-likelihood= 87.89, AIC= 177.78, BIC= 179.21 and KS= 0.11300.
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2. Regarding the results for UTXG model under the strength data: The UTXG model is the best model with
−Log-likelihood= 109.66, AIC= 221.33, BIC= 222.76 and KS= 0.1982.

3. Regarding the results for LTXG model under the strength data: The LTXG model is the best model with
−Log-likelihood= 106.32, AIC= 214.65, BIC= 216.08 and KS= 0.1655.

4. Generally, the DTXG version is the best the LTXG model then UTXG model. Hence, it is recommended to
use the DTXG version in the processes of statistical analysis and mathematical and statistical modeling of
real data.

Table 9: The MLEs of model parameters and model selection criteria for glass strength data

Distributions Estimate(Std. Err.) −Log-likelihood AIC BIC KS
Exponential(λ) λ̂=0.0324(0.0058) 137.26 276.53 277.96 0.4586

Weibull(α, λ) α̂=4.6349(0.6292)
λ̂=33.673(1.3829) 105.49 214.98 217.84 0.1525

Lindley(θ) θ̂=0.0629(0.0080) 126.99 255.99 257.42 0.3655

Xgamma(θ) θ̂=0.0937(0.0098) 122.27 246.55 247.98 0.3245

UTXG(β, θ) β̂=45.381
θ̂=0.0349(0.0166) −109.66 221.33 222.76 0.1982

LTXG(α, θ) α̂=18.83
θ̂=0.1377(0.0169) −106.32 214.65 216.08 0.1655

DTXG(α,β, θ) α̂=18.83
β̂=45.381
θ̂=0.1480(0.0186) −87.89 177.78 179.21 0.11300

10. Concluding remarks

In this article, we introduced the truncated versions of xgamma distribution called upper truncated, lower truncated
and double truncated xgamma distribution. Particularly, the properties of the upper truncated xgamma distribution
such as moments, popular entropy measures, order statistics are discussed. We briefly described different estimation
methods, namely the maximum likelihood, ordinary least squares, weighted least squareand L-Moments. The
maximum likelihood estimators are constructed for estimating the unknown parameters of the upper truncated
xgamma as well as lower truncated and double truncated xgamma distributions in some details. Monte Carlo
simulation experiments are performed for comparing the performances of the proposed methods of estimation for
both small and large samples under the lower, upper and double versions. Two applications are provided, the first
one comparing estimation methods and the other for illustrating the applicability of the new model. In comparing
methods, we consider the Kolmomogorov-Smirnov statistic and its p-value. In comparing models, the goodness-of-
fits of the exponential, Weibull, Lindley, xgamma and truncated (lower, upper, double) xgamma distributions have
been compared through the negative log-likelihood, Akaike information criteria, Bayesian information criteria and
Kolmomogorov-Smirnov statistics and found that the double truncated xgamma distribution fits well the data of
the window strengths. Finally, it may be concluded that the truncated distributions can be quite effectively used
to model the real problems and truncated xgamma distributions are potential models in explaining the uncertainty
coming from various fields of applications where truncated data are commonly observed.
Regarding the assessment of the classical estimation methods, some important results can be summarized as
follows:
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1. Regarding the results for DTXG model under the strength data: The ordinary least squares method is the best
method with KS= 0.10860 and p-value= 0.85806 then the weighted least squares method with KS= 0.11111
and p-value= 0.83870. However, the other methods performed well.

2. Regarding the results for UTXG model under the strength data: The ordinary least squares method is the best
method with KS= 0.19820 and p-value= 0.17499. However, the maximum likelihood and weighted least
squares methods performed well.

3. Regarding the results for LTXG model under the strength data: The ordinary least squares method is the
best method with KS= 0.14453 and p-value= 0.53648. However, the maximum likelihood and L-Moment
methods performed well. Generally, we can say that the ordinary least squares methods is the best methed
and can be recommended for comparing the estimation methods.

Regarding the comparison of the competitive model, some important results can be summarized as follows:

1. Regarding the results for DTXG model under the strength data: The DTXG model is the best model with
−Log-likelihood= 87.89, AIC= 177.78, BIC= 179.21 and KS= 0.11300.

2. Regarding the results for UTXG model under the strength data: The UTXG model is the best model with
−Log-likelihood= 109.66, AIC= 221.33, BIC= 222.76 and KS= 0.1982.

3. Regarding the results for LTXG model under the strength data: The LTXG model is the best model with
−Log-likelihood= 106.32, AIC= 214.65, BIC= 216.08 and KS= 0.1655.

4. Generally, the DTXG version is the best the LTXG model then UTXG model. Hence, it is recommended to
use the DTXG version in the processes of statistical analysis and mathematical and statistical modeling of
real data.
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Figure 1. Plots of the baseline XG PDF for some parameter values.
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Figure 2. Plots of the baseline UTXG PDF for some parameter values.
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Figure 3. Plots of the baseline LTXG PDF for some parameter values.
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Figure 4. Plots of the baseline DTXG PDF for some parameter values.
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